Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum.

Identifieur interne : 002628 ( Main/Exploration ); précédent : 002627; suivant : 002629

Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum.

Auteurs : Jessica L. Linville [États-Unis] ; Miguel Rodriguez ; Miriam Land ; Mustafa H. Syed ; Nancy L. Engle ; Timothy J. Tschaplinski ; Jonathan R. Mielenz ; Chris D. Cox

Source :

RBID : pubmed:24205326

Descripteurs français

English descriptors

Abstract

BACKGROUND

An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes.

METHODOLOGY/PRINCIPAL FINDINGS

In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v).

CONCLUSION/SIGNIFICANCE

The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially robust strains of consolidated bioprocessing microorganisms.


DOI: 10.1371/journal.pone.0078829
PubMed: 24205326
PubMed Central: PMC3804516


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum.</title>
<author>
<name sortKey="Linville, Jessica L" sort="Linville, Jessica L" uniqKey="Linville J" first="Jessica L" last="Linville">Jessica L. Linville</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, United States of America ; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, United States of America ; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Miguel" sort="Rodriguez, Miguel" uniqKey="Rodriguez M" first="Miguel" last="Rodriguez">Miguel Rodriguez</name>
</author>
<author>
<name sortKey="Land, Miriam" sort="Land, Miriam" uniqKey="Land M" first="Miriam" last="Land">Miriam Land</name>
</author>
<author>
<name sortKey="Syed, Mustafa H" sort="Syed, Mustafa H" uniqKey="Syed M" first="Mustafa H" last="Syed">Mustafa H. Syed</name>
</author>
<author>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
</author>
<author>
<name sortKey="Mielenz, Jonathan R" sort="Mielenz, Jonathan R" uniqKey="Mielenz J" first="Jonathan R" last="Mielenz">Jonathan R. Mielenz</name>
</author>
<author>
<name sortKey="Cox, Chris D" sort="Cox, Chris D" uniqKey="Cox C" first="Chris D" last="Cox">Chris D. Cox</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:24205326</idno>
<idno type="pmid">24205326</idno>
<idno type="doi">10.1371/journal.pone.0078829</idno>
<idno type="pmc">PMC3804516</idno>
<idno type="wicri:Area/Main/Corpus">002408</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002408</idno>
<idno type="wicri:Area/Main/Curation">002408</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002408</idno>
<idno type="wicri:Area/Main/Exploration">002408</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum.</title>
<author>
<name sortKey="Linville, Jessica L" sort="Linville, Jessica L" uniqKey="Linville J" first="Jessica L" last="Linville">Jessica L. Linville</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, United States of America ; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, United States of America ; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Rodriguez, Miguel" sort="Rodriguez, Miguel" uniqKey="Rodriguez M" first="Miguel" last="Rodriguez">Miguel Rodriguez</name>
</author>
<author>
<name sortKey="Land, Miriam" sort="Land, Miriam" uniqKey="Land M" first="Miriam" last="Land">Miriam Land</name>
</author>
<author>
<name sortKey="Syed, Mustafa H" sort="Syed, Mustafa H" uniqKey="Syed M" first="Mustafa H" last="Syed">Mustafa H. Syed</name>
</author>
<author>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
</author>
<author>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
</author>
<author>
<name sortKey="Mielenz, Jonathan R" sort="Mielenz, Jonathan R" uniqKey="Mielenz J" first="Jonathan R" last="Mielenz">Jonathan R. Mielenz</name>
</author>
<author>
<name sortKey="Cox, Chris D" sort="Cox, Chris D" uniqKey="Cox C" first="Chris D" last="Cox">Chris D. Cox</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Dioxide (metabolism)</term>
<term>Cellulose (metabolism)</term>
<term>Clostridium thermocellum (drug effects)</term>
<term>Clostridium thermocellum (genetics)</term>
<term>Clostridium thermocellum (growth & development)</term>
<term>Clostridium thermocellum (physiology)</term>
<term>Fermentation (drug effects)</term>
<term>Gene Expression Regulation, Bacterial (drug effects)</term>
<term>Genomics (MeSH)</term>
<term>Hydrogen (metabolism)</term>
<term>Hydrolysis (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Populus (metabolism)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Cellulose (métabolisme)</term>
<term>Clostridium thermocellum (croissance et développement)</term>
<term>Clostridium thermocellum (effets des médicaments et des substances chimiques)</term>
<term>Clostridium thermocellum (génétique)</term>
<term>Clostridium thermocellum (physiologie)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Fermentation (effets des médicaments et des substances chimiques)</term>
<term>Génomique (MeSH)</term>
<term>Hydrogène (métabolisme)</term>
<term>Hydrolyse (MeSH)</term>
<term>Mutation (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Régulation de l'expression des gènes bactériens (effets des médicaments et des substances chimiques)</term>
<term>Spécificité d'espèce (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Cellulose</term>
<term>Hydrogen</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Clostridium thermocellum</term>
<term>Fermentation</term>
<term>Gene Expression Regulation, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Clostridium thermocellum</term>
<term>Fermentation</term>
<term>Régulation de l'expression des gènes bactériens</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellulose</term>
<term>Dioxyde de carbone</term>
<term>Hydrogène</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Clostridium thermocellum</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Genomics</term>
<term>Hydrolysis</term>
<term>Mutation</term>
<term>Sequence Analysis, DNA</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ADN</term>
<term>Génomique</term>
<term>Hydrolyse</term>
<term>Mutation</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/PRINCIPAL FINDINGS</b>
</p>
<p>In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION/SIGNIFICANCE</b>
</p>
<p>The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially robust strains of consolidated bioprocessing microorganisms.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24205326</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>08</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>02</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2013</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum.</ArticleTitle>
<Pagination>
<MedlinePgn>e78829</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0078829</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">An industrially robust microorganism that can efficiently degrade and convert lignocellulosic biomass into ethanol and next-generation fuels is required to economically produce future sustainable liquid transportation fuels. The anaerobic, thermophilic, cellulolytic bacterium Clostridium thermocellum is a candidate microorganism for such conversions but it, like many bacteria, is sensitive to potential toxic inhibitors developed in the liquid hydrolysate produced during biomass processing. Microbial processes leading to tolerance of these inhibitory compounds found in the pretreated biomass hydrolysate are likely complex and involve multiple genes.</AbstractText>
<AbstractText Label="METHODOLOGY/PRINCIPAL FINDINGS" NlmCategory="RESULTS">In this study, we developed a 17.5% v/v Populus hydrolysate tolerant mutant strain of C. thermocellum by directed evolution. The genome of the wild type strain, six intermediate population samples and seven single colony isolates were sequenced to elucidate the mechanism of tolerance. Analysis of the 224 putative mutations revealed 73 high confidence mutations. A longitudinal analysis of the intermediate population samples, a pan-genomic analysis of the isolates, and a hotspot analysis revealed 24 core genes common to all seven isolates and 8 hotspots. Genetic mutations were matched with the observed phenotype through comparison of RNA expression levels during fermentation by the wild type strain and mutant isolate 6 in various concentrations of Populus hydrolysate (0%, 10%, and 17.5% v/v).</AbstractText>
<AbstractText Label="CONCLUSION/SIGNIFICANCE" NlmCategory="CONCLUSIONS">The findings suggest that there are multiple mutations responsible for the Populus hydrolysate tolerant phenotype resulting in several simultaneous mechanisms of action, including increases in cellular repair, and altered energy metabolism. To date, this study provides the most comprehensive elucidation of the mechanism of tolerance to a pretreated biomass hydrolysate by C. thermocellum. These findings make important contributions to the development of industrially robust strains of consolidated bioprocessing microorganisms.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Linville</LastName>
<ForeName>Jessica L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, United States of America ; Bioenergy Science Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rodriguez</LastName>
<ForeName>Miguel</ForeName>
<Initials>M</Initials>
<Suffix>Jr</Suffix>
</Author>
<Author ValidYN="Y">
<LastName>Land</LastName>
<ForeName>Miriam</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Syed</LastName>
<ForeName>Mustafa H</ForeName>
<Initials>MH</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Engle</LastName>
<ForeName>Nancy L</ForeName>
<Initials>NL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tschaplinski</LastName>
<ForeName>Timothy J</ForeName>
<Initials>TJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mielenz</LastName>
<ForeName>Jonathan R</ForeName>
<Initials>JR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cox</LastName>
<ForeName>Chris D</ForeName>
<Initials>CD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7YNJ3PO35Z</RegistryNumber>
<NameOfSubstance UI="D006859">Hydrogen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="N">Cellulose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048013" MajorTopicYN="N">Clostridium thermocellum</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="N">Gene Expression Regulation, Bacterial</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006859" MajorTopicYN="N">Hydrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006868" MajorTopicYN="N">Hydrolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="Y">Mutation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>09</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>11</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>11</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>8</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24205326</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0078829</ArticleId>
<ArticleId IdType="pii">PONE-D-13-08354</ArticleId>
<ArticleId IdType="pmc">PMC3804516</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):777-793</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2000 May;54(1):53-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10846747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jul 5;97(14):8063-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10869437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):276-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2001 Nov;27(5):275-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11781801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2002 Nov;4(11):703-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12460278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2003 Jan 15;75(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2003 Spring;105 -108:69-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12721476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 May;185(10):3042-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Aug;185(15):4539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12867463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2003 Sep;67(3):429-53, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12966143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2004 Nov;66(1):10-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15300416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Dec 5;88(5):567-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(1):99-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15601693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Aug;71(8):4672-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16085862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2005 Oct;16(5):577-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16154338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Naturwissenschaften. 2006 Jun;93(6):259-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16555095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2007 Feb;74(2):422-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17124583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2007 Aug 15;97(6):1460-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17274071</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2007 May;9(3):258-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17292651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2008 Jan;67(1):102-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18078441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Jun;6(6):419-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18475305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Sep;18(9):1509-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Nov;18(11):1851-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18714091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2008 Dec;74(24):7709-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18849451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Apr 3;324(5923):89-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19342588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(4):e5271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19384422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Jul;75(13):4315-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19429550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2009 Oct;75(19):6132-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19684179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2010 Feb 18;11:94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20167110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2010 Mar 22;4:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20307315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2010 Jul;12(4):307-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20346409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2010 Jul 1;308(1):84-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20487018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2010 Oct 15;107(3):430-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20552667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2011 Jan;173(1):46-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20682343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2011 Jul;38(7):825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20820855</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18646-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Feb;102(3):2702-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21111615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Feb;77(4):1243-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21169455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(12):220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Microbiol. 2011 Jun 14;11:134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21672225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2011 Jul 05;7:509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21734648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Aug 16;108(33):13752-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21825121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Nov;92(3):641-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21874277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Biotechnol. 2012 Feb 15;29(3):345-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22110030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Mar 1;28(5):750-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22238270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(2):e31934</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22363772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Microbiol. 2012 Sep;194(9):759-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22484477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Res. 2012 Jun 20;167(6):364-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22494898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(6):e39754</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22761889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1994 Jun 17;269(24):16977-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8207022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 1993;47:441-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8257105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9529885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1999 Feb 20;62(4):447-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9921153</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Cox, Chris D" sort="Cox, Chris D" uniqKey="Cox C" first="Chris D" last="Cox">Chris D. Cox</name>
<name sortKey="Engle, Nancy L" sort="Engle, Nancy L" uniqKey="Engle N" first="Nancy L" last="Engle">Nancy L. Engle</name>
<name sortKey="Land, Miriam" sort="Land, Miriam" uniqKey="Land M" first="Miriam" last="Land">Miriam Land</name>
<name sortKey="Mielenz, Jonathan R" sort="Mielenz, Jonathan R" uniqKey="Mielenz J" first="Jonathan R" last="Mielenz">Jonathan R. Mielenz</name>
<name sortKey="Rodriguez, Miguel" sort="Rodriguez, Miguel" uniqKey="Rodriguez M" first="Miguel" last="Rodriguez">Miguel Rodriguez</name>
<name sortKey="Syed, Mustafa H" sort="Syed, Mustafa H" uniqKey="Syed M" first="Mustafa H" last="Syed">Mustafa H. Syed</name>
<name sortKey="Tschaplinski, Timothy J" sort="Tschaplinski, Timothy J" uniqKey="Tschaplinski T" first="Timothy J" last="Tschaplinski">Timothy J. Tschaplinski</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Linville, Jessica L" sort="Linville, Jessica L" uniqKey="Linville J" first="Jessica L" last="Linville">Jessica L. Linville</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002628 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002628 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24205326
   |texte=   Industrial robustness: understanding the mechanism of tolerance for the Populus hydrolysate-tolerant mutant strain of Clostridium thermocellum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24205326" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020